If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6u^2+7u-20=0
a = 6; b = 7; c = -20;
Δ = b2-4ac
Δ = 72-4·6·(-20)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-23}{2*6}=\frac{-30}{12} =-2+1/2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+23}{2*6}=\frac{16}{12} =1+1/3 $
| -5b-8=4-1b | | X+55+x+93=180 | | 5x-5+3x+13=360 | | 4d+8=3d−15 | | 10-2x=19x-5x | | 24=18+3x | | 15x10=16x+4 | | 2x+10+2x=70 | | (4x+8)/2=3(x-3) | | (4/7)(x-(1/4)=3/7 | | 17.75x+24=18.95x+18 | | 5−4p=−72 | | -5(-3x-2)-(x-3)=-4(4x+5)+13 | | 4/24=r/36 | | -(4/7)(x-(1/4))=-(3/7) | | 3v-6=24 | | 14=-1-4n+n | | 35-b=-2b-3(b-1) | | 4x+2(0)=1500 | | 8(-4-3x)=-8x+32 | | 44x-40=180 | | 8x-10=-2x | | 23x-46=23 | | n+(n)=3+15 | | -7x-27=8x+3 | | 3x+16+8x+310x-28=180 | | 8(7x-3)=30 | | 41=6x-4+3x | | 3(3n−5)+4(5n+2)=5n+137 | | 4(0)+2x=1500 | | t+55=446 | | .666(6x+18)=3x-15 |